

Gate Drive Transformer – PT3597

Special Features:

- Nominal input voltage: 15V
- Nominal output voltage: 17V
- Three separate outputs
- THT / Surface mount component
- High symmetry of the leakage inductance
- Low interwinding capacitance
- Insulation voltage up to 5kV
- Excellent partial discharge resistance
- Fully insulated wires
- Compliant with:
 - IEC62109
 - IEC61558-2-16
- Compact and lightweight
- Low profile
- Operating ambient temperature: -40°C to 85°C
- Designed for fully automated assembly process

Typical Applications:

- Switched Mode Power Supplies
- High performance gate drive circuit

Packaging possibilities:

- ESD box
- Cardboard box
- Tape & Reel

For samples please contact directly

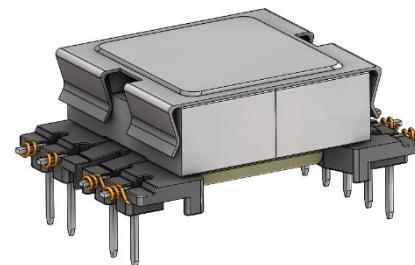


Figure 1. View of gate drive transformer.

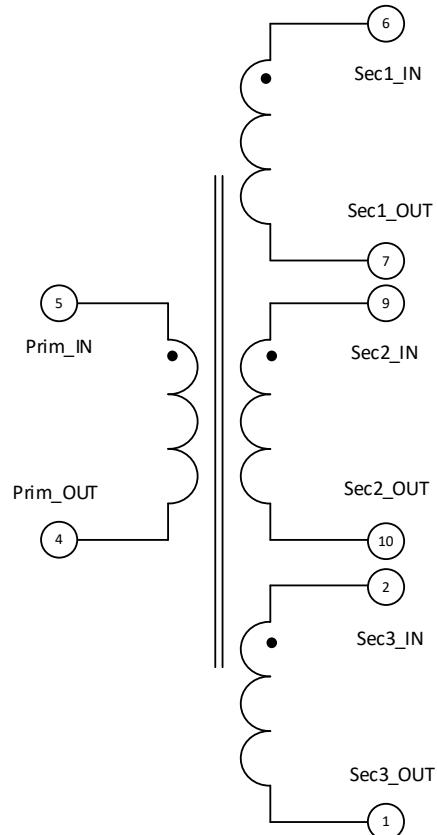


Figure 2. Electrical circuit of the transformer.

Environmentally friendly solution:

- RoHS and REACH compliant

Table 1. Electrical parameters.

Parameter description	Parameter	Comment
Circuits	Circuit terminals are shown in Figure 2	-
Primary inductance	$L_{Prim_IN-Prim_OUT} = 500 \mu H \pm 30\%$	@0.3 V, 70 kHz, sinus voltage
Leakage inductance	$11 \mu H \leq L_{Prim_IN-Prim_OUT} \leq 16 \mu H$ (Measured on primary winding, all secondary windings shorted)	@0.3 V, 70 kHz, sinus voltage
Leakage inductance	$L_{Prim_IN-Prim_OUT} = 16 \mu H \pm 20\%$ (Measured on primary winding, secondary Sec1 shorted)	@0.3 V, 70 kHz, sinus voltage
Leakage inductance	$L_{Prim_IN-Prim_OUT} = 16 \mu H \pm 20\%$ (Measured on primary winding, secondary Sec2 shorted)	@0.3 V, 70 kHz, sinus voltage
Leakage inductance	$L_{Prim_IN-Prim_OUT} = 16 \mu H \pm 20\%$ (Measured on primary winding, secondary Sec3 shorted)	@0.3 V, 70 kHz, sinus voltage
Rated voltage	$V_{Prim_IN-Prim_OUT} = 15 V$	Nominal voltage
Turns ratio	Prim : Sec1 = $0.82 \pm 5\%$ Prim : Sec2 = $0.82 \pm 5\%$ Prim : Sec3 = $0.82 \pm 5\%$	@1.5 V, 10 kHz, sinus voltage
Winding dc resistance	$R_{Prim_IN-Prim_OUT} \leq 350 m\Omega (@20^\circ C)$	given values are valid for $20^\circ C$ (resistance temperature coefficient 0.00393 1/K)
Winding dc resistance	$R_{Sec1_IN-Sec1_OUT} \leq 685 m\Omega (@20^\circ C)$	given values are valid for $20^\circ C$ (resistance temperature coefficient 0.00393 1/K)
Winding dc resistance	$R_{Sec2_IN-Sec2_OUT} \leq 685 m\Omega (@20^\circ C)$	given values are valid for $20^\circ C$ (resistance temperature coefficient 0.00393 1/K)
Winding dc resistance	$R_{Sec3_IN-Sec3_OUT} \leq 685 m\Omega (@20^\circ C)$	given values are valid for $20^\circ C$ (resistance temperature coefficient 0.00393 1/K)
Rated ambient temperature	$T_a = -40^\circ C$ to $+85^\circ C$	-
Insulation class	A ($105^\circ C$)	Customer should provide power de-rating to prevent exceeding of $110^\circ C$ on windings surface
Dielectric strength	Between any two windings and each winding to the ferrite core. 1500 VACRMS @50 Hz, 60 sec.	-
Dielectric strength	Between primary winding and all secondary windings 1500 VACRMS @50 Hz, 1 sec.	-
Partial Discharge	Between any two windings: Partial discharge inception voltage (V_{PDinc}): 1500 V Partial discharge extinction voltage (V_{PDext}): 1200 V Partial discharge $< 10 pC$	-
Cooling	Natural convection	-

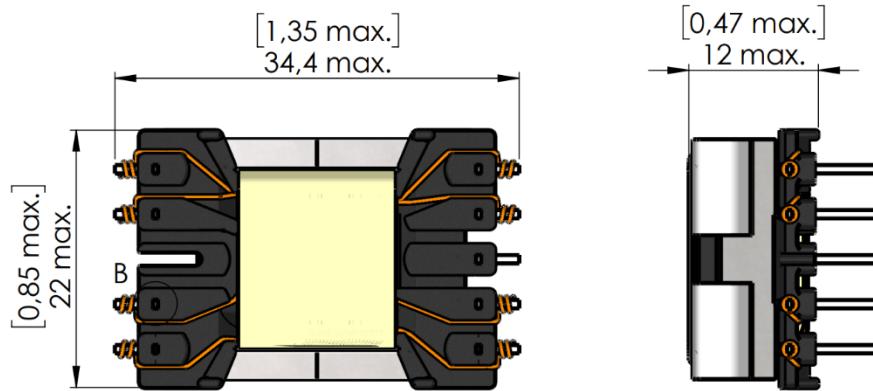


Figure 3. Transformer view (dimensions in mm [inch]).

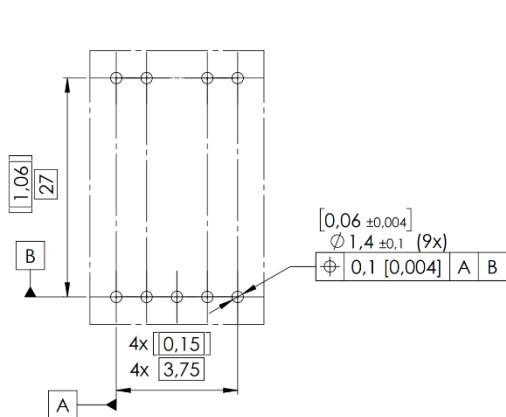


Figure 4. Transformer layout pattern (dimensions in mm [inch]).

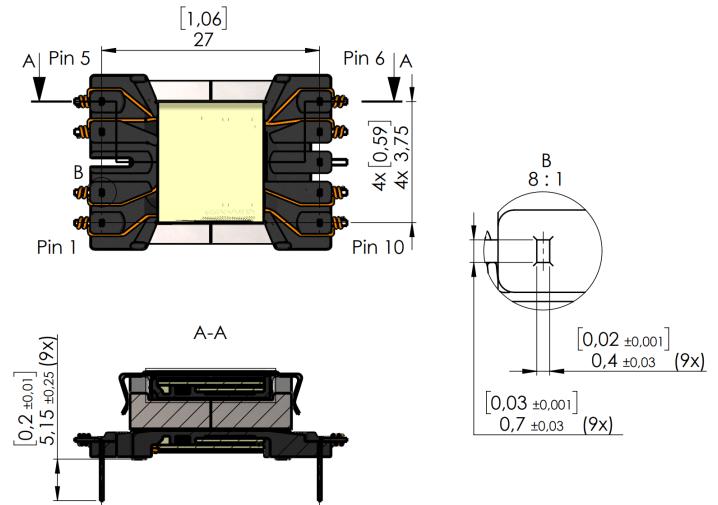


Figure 5. Transformer terminations, bottom view (dimensions in mm [inch]).